Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Thrombolysis ; 56(3): 398-410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37432612

RESUMO

Cardiovascular therapeutic devices (CTDs) remain limited by thrombotic adverse events. Current antithrombotic agents limit thrombosis partially, often adding to bleeding. The Impella® blood pump utilizes heparin in 5% dextrose (D5W) as an internal purge to limit thrombosis. While effective, exogenous heparin often complicates overall anticoagulation management, increasing bleeding tendency. Recent clinical studies suggest sodium bicarbonate (bicarb) may be an effective alternative to heparin for local anti-thrombosis. We examined the effect of sodium bicarbonate on human platelet morphology and function to better understand its translational utility. Human platelets were incubated (60:40) with D5W + 25 mEq/L, 50 mEq/L, or 100 mEq/L sodium bicarbonate versus D5W or D5W + Heparin 50 U/mL as controls. pH of platelet-bicarbonate solutions mixtures was measured. Platelet morphology was examined via transmission electron microscopy; activation assessed via P-selectin expression, phosphatidylserine exposure and thrombin generation; and aggregation with TRAP-6, calcium ionophore, ADP and collagen quantified; adhesion to glass measured via fluorescence microscopy. Sodium bicarbonate did not alter platelet morphology but did significantly inhibit activation, aggregation, and adhesion. Phosphatidylserine exposure and thrombin generation were both reduced in a concentration-dependent manner-between 26.6 ± 8.2% (p = 0.01) and 70.7 ± 5.6% (p < 0.0001); and 14.0 ± 6.2% (p = 0.15) and 41.7 ± 6.8% (p = 0.03), respectively, compared to D5W control. Platelet aggregation via all agonists was also reduced, particularly at higher concentrations of bicarb. Platelet adhesion to glass was similarly reduced, between 0.04 ± 0.03% (p = 0.61) and 0.11 ± 0.04% (p = 0.05). Sodium bicarbonate has direct, local, dose-dependent effects limiting platelet activation and adhesion. Our results highlight the potential utility of sodium bicarbonate as a locally acting agent to limit device thrombosis.


Assuntos
Bicarbonato de Sódio , Trombose , Humanos , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/metabolismo , Trombina/metabolismo , Fosfatidilserinas/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Plaquetas , Heparina/farmacologia , Trombose/tratamento farmacológico , Trombose/prevenção & controle
2.
Artif Organs ; 47(6): 971-981, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36633107

RESUMO

BACKGROUND: The Impella® microaxial blood pumps utilize purge fluid containing heparin to prevent biofouling of internal surfaces. Purge fluid interfaces with blood or blood components at two notable internal locations: (1) 5-8 µm radial gap ("Radial Gap" or "Gap 1") between the motor shaft and bearing, a site accessible by blood proteins or small molecules; and (2) 100 µm axial gap ("Axial Gap" or "Gap 2") between the impeller rotor and bearing, the site of mixing with larger circulating blood components. Despite its efficacy, heparin in the purge fluid complicates overall patient anticoagulation management. Here, we investigate sodium bicarbonate as an alternative to heparin in the purge fluid in a simulated purge gap micro-environment. METHODS: To assess protein stability simulated at Gap 1, human serum albumin (HSA; 40 mg/ml) species were quantified utilizing size exclusion liquid chromatography (SEC-HPLC) after stirring with purge fluid (5% dextrose in water (D5W) with heparin (25 U/ml) or sodium bicarbonate (25 or 50 mEq/L)) over a 24-h period. pH measurements were taken immediately prior to stirring. Mixing between blood and purge fluid at Gap 2 was mimicked in vitro utilizing a 60:40 blood: purge fluid ratio. Purge fluid consisted of D5W with or without sodium bicarbonate (25 or 50 mEq/L). Human citrated blood samples were freshly collected with or without the addition of heparin (5 U/ml). Coagulability was determined via thromboelastography (TEG). pH measurements of blood mixtures were taken immediately before and after TEG analysis. RESULTS: Sodium bicarbonate alone or synergistically with heparin was effective in increasing protein stability, increasing pH, and reducing coagulability. In the Gap 1 model, sodium bicarbonate led to preservation of HSA monomer after 24 h mixing, with monomer composing 88.3 ± 2.3% and 88.6 ± 0.9% of total HSA species for 25 or 50 mEq/L sodium bicarbonate, respectively. Only 60.4 ± 4.3% monomer was observed with D5W alone (p < 0.005). HSA aggregates and fragments were evident in heparin and D5W purge mixtures, but absent in sodium bicarbonate (25 and 50 mEq/L). pH of HSA mixtures significantly increased in the presence of sodium bicarbonate. In the Gap 2 model, combined heparin (5 U/ml) and sodium bicarbonate prolonged clotting time (TEG-ACT), leading to an average increase of 795 ± 275 s (p = 0.04) and 846 243 s (p = 0.03). This trend of reduced coagulability was similarly observed in clot initiation time (R time), clot formation time (K time), and clotting rate (α angle). Blood mixture pH measurements increased with addition of sodium bicarbonate in both heparinized and non-heparinized blood samples. CONCLUSION: Sodium bicarbonate in the purge fluid has the potential to significantly increase protein stability and reduce protein denaturation at the Impella® radial gap (Gap 1), while reducing blood coagulation at the Impella® axial gap (Gap 2). The influence of sodium bicarbonate on the biochemical environment of the purge fluid may ensure stable purge flow resistance and play a synergistic or supportive role in the purge gap micro-environment when used with systemic anticoagulation.


Assuntos
Anticoagulantes , Bicarbonato de Sódio , Humanos , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Heparina/farmacologia , Heparina/uso terapêutico , Coagulação Sanguínea , Estabilidade Proteica
4.
Int J Artif Organs ; : 391398820909843, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126866

RESUMO

INTRODUCTION: Short-term mechanical circulatory support devices provide temporary hemodynamic support in heart failure and are increasingly used to enable recovery or as a bridge to decision. Blood damage with mechanical circulatory support devices is influenced by many factors, including the magnitude and duration of shear stress and obstruction to blood flow. This study aimed to evaluate the effects of the Impella CP® heart pump positioning on hemolysis using in vitro hemolysis testing and computational fluid dynamics modeling. METHODS: The in vitro hemolysis testing was conducted per the recommended Food and Drug Administration and American Society for Testing and Materials guidelines. The bench hemolysis testing and computational fluid dynamics simulation analysis were performed for both normal operating (outlet unobstructed) and outlet-obstructed condition of Impella CP (mimicking outlet on the aortic valve due to improper positioning). RESULTS: The modified index of hemolysis was 2.78 ± 0.69 at normal operating conditions compared to 18.7 ± 7.8 when the Impella CP outlet was obstructed (p = 0.002). Computational fluid dynamics modeling showed about three times increase in exposure time to regions of high shear stress when the Impella CP outlet was obstructed compared to unobstructed condition, thus supporting the experimental observations. CONCLUSION: Based on these results, it is recommended to ensure proper placement of Impella CP via regular monitoring using echocardiographic guidance or other methods to minimize the risk of hemolysis associated with an obstructed outflow.

5.
Mater Sci Eng C Mater Biol Appl ; 35: 335-40, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24411385

RESUMO

Tri-leaflet polyurethane heart valves have been considered as a potential candidate in heart valve replacement surgeries. In this study, polyurethane (Angioflex(®)) heart valve prostheses were fabricated using a solvent-casting method to evaluate their calcification resistance. These valves were subjected to accelerated life testing (continuous opening and closing of the leaflets) in a synthetic calcification solution. Results showed that Angioflex(®) could be considered as a potential material for fabricating prosthetic heart valves with possibly a higher calcification resistance compared to tissue valves. In addition, calcification resistance of bisphosphonate-modified Angioflex(®) valves was also evaluated. Bisphosphonates are considered to enhance the calcification resistance of polymers once covalently bonded to the bulk of the material. However, our in-vitro results showed that bisphosphonate-modified Angioflex(®) valves did not improve the calcification resistance of Angioflex(®) compared to its untreated counterparts. The results also showed that cyclic loading of the valves' leaflets resulted in formation of numerous cracks on the calcified surface, which were not present when calcification study did not involve mechanical loading. Further study of these cracks did not result in enough evidence to conclude whether these cracks have penetrated to the polymeric surface.


Assuntos
Análise Química do Sangue/métodos , Cálcio/análise , Cálcio/química , Materiais Revestidos Biocompatíveis/química , Difosfonatos/química , Próteses Valvulares Cardíacas , Poliuretanos/química , Elastômeros de Silicone/química , Análise de Falha de Equipamento , Desenho de Prótese
6.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2770-5, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623095

RESUMO

Surface defects, blood flow shear rates and mechanical stresses are contributing factors in the calcification process of polymeric devices exposed to the blood flow. A number of experiments were performed to evaluate the effect of surface defects such as roughness and cracks and flow shear rate on the calcification process of a polyurethane material used in the design of prosthetic heart valves. Results showed that polyurethane surface gets calcified and the calcification is more pronounced at the lower shear rates. Roughness and cracks both increase the calcification levels. The results also suggest very little diffusion of calcium to the subsurface indicating that calcification of a polyurethane material, is a surface phenomenon. Based on a simple peeling test, the bond strength between the calcified layer and polyurethane was found to be extremely weak, suggesting that the bonding is in the form of Van-der-Waals. A limited set of experiments with polycarbonate showed that polycarbonate is less prone to calcification compared to polyurethane (p values less than 0.05), indicating its potential application in medical devices exposed to blood flow.


Assuntos
Calcinose , Próteses Valvulares Cardíacas , Poliuretanos/química , Propriedades de Superfície , Microscopia Eletrônica de Varredura , Desenho de Prótese
7.
ASAIO J ; 56(4): 290-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20508499

RESUMO

It is well known that thrombus can be formed at stagnation regions in blood flow. However, studies of thrombus formation have typically focused on steady state flow. We hypothesize that pulsating flow may reduce persistent stagnation at the sites of low shear stress by decreasing exposure time. In this study, a step-wall transition, which is commonly found on implantable devices, is used as a test bed causing a recirculation vortex. Stagnation at such a step is considered using computational fluid dynamics studies and flow visualization experiments. Parametric studies were performed with varying step height, pulsatility, and velocity. The percentage of time along the wall with shear stresses below a threshold for thrombosis and the total length of wall that maintains contact with stagnant flow throughout the cardiac cycle are calculated. Persistent stagnation occurs at the corner of a step-wall transition in all cases and is observed to decrease with a decrease in step height, an increase in mean velocity, and an increase in pulsatility. Under steady flow conditions, a flow reattachment point resulting from recirculation is observed with expanding steps, whereas a flow separation point is observed with contracting steps. Pulsatility decreases persistent stagnation at the flow separation point with contracting steps, whereas it completely eliminates persistent stagnation at the flow reattachment point with expanding steps. The results of this work conclusively show that stagnation can be reduced by increasing pulsatility and flow velocity and by decreasing step height.


Assuntos
Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Trombose/etiologia , Modelos Teóricos , Estresse Mecânico , Trombose/fisiopatologia
8.
Artif Organs ; 34(7): 561-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497159

RESUMO

Implantable devices in direct contact with flowing blood are associated with the risk of thromboembolic events. This study addresses the need to improve our understanding of the thrombosis mechanism and to identify areas on artificial surfaces susceptible to thrombus deposition. Thrombus deposits on artificial blood step transitions are quantified experimentally and compared with shear stress and shear rate distributions using computational fluid dynamics (CFD) models. Larger steps, and negative (expanding) steps result in larger thrombus deposits. Fitting CFD results to experimental deposit locations reveals a specific shear stress threshold of 0.41 Pa or a shear rate threshold of 54 s(-1) using a shear thinning blood viscosity model. Thrombosis will occur below this threshold, which is specific to solvent-polished polycarbonate surfaces under in vitro coagulation conditions with activated clotting time levels of 200-220 s. The experimental and computational models are valuable tools for thrombosis prediction and assessment that may be used before proceeding to clinical trials and to better understand existing clinical problems with thrombosis.


Assuntos
Próteses e Implantes/efeitos adversos , Trombose/etiologia , Animais , Materiais Biocompatíveis/efeitos adversos , Bovinos , Simulação por Computador , Modelos Biológicos , Estresse Mecânico , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...